A Tool to Develop Arabic Handwriting Recognition System Using Genetic Approach

نویسنده

  • Hanan Aljuaid
چکیده

Problem statement: Significant movement has been made in handwriting recognition technology over the last few years. Up until now, Arabic handwriting recognition systems have been limited to small and medium vocabulary applications, since most of them often rely on a database during the recognition process. The facility of dealing with large database, however, opens up many more applications. Approach: This study presented a complete system to recognize off-line Arabic handwriting image and Arabic handwriting and printed text database AHPD-UTM that used to implement and test the system. That system start from preprocessing and segmentation phases that deepened on thinning the image and found the V and H projection profile until recognition phase by genetic algorithm. Results: The genetic algorithm stand on feature extraction algorithm that defined six feature for each segment beak. The system can be recognized Arabic handwriting with 87% accuracy. The confusion and rejection rates are 8.4, those causes for several problems like characters with broken loops and character segmentation problem. Conclusion: Peak connection solved some of the segmentation problems and helped to provide better accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

Arabic Online Handwriting Recognition Using Neural Network

This article presents the development of an Arabic online handwriting recognition system. To develop our system, we have chosen the neural network approach. It offers solutions for most of the difficulties linked to Arabic script recognition. We test the approach with our collected databases. This system shows a good result and it has a high accuracy (98.50% for characters, 96.90% for words).

متن کامل

Isolated Persian/Arabic handwriting characters: Derivative projection profile features, implemented on GPUs

For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to run in high speed. One of the methods to increase the processing speed is to use the computer pa...

متن کامل

Evaluation Approach of Arabic Character Recognition

This paper proposes and contributes towards designing a complete system for off-line Arabic character recognition. The proposed system is specifically meant for Arabic handwriting recognition, but it equally works for the typed character recognition. It has various phases including preprocessing and segmentation. It also includes thinning phase and finds vertical and horizontal projection profi...

متن کامل

High capacity steganography tool for Arabic text using 'Kashida'

Steganography is the ability to hide secret information in a cover-media such as sound, pictures and text. A new approach is proposed to hide a secret into Arabic text cover media using "Kashida", an Arabic extension character. The proposed approach is an attempt to maximize the use of "Kashida" to hide more information in Arabic text cover-media. To approach this, some algorithms have been des...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010